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The concept of model chemistries within hybrid QM/MM calculations has been addressed through analysis
of the polarization energy determined by two distinct approaches based on (i) induced charges and (ii) induced
dipoles. The quantum mechanical polarization energy for four configurations of the water dimer has been
determined for a range of basis sets using Morokuma energy decomposition analysis. This benchmark value
has been compared to the fully classical polarization energy determined using the induced dipole approach,
and the molecular mechanics polarization energy calculated using induced charges within the MM region of
hybrid QM/MM calculations. From the water dimer calculations, it is concluded that the induced charge
approach is consistent with medium sized basis set calculations whereas the induced dipole approach is
consistent with large basis set calculations. This result is highly relevant to the concept of QM/MM model
chemistries.

Introduction

The use of quantum mechanics in quantum mechanical model
chemistries has greatly simplified the systematic study of trends
within a series of similar compounds and has led to a clear
understanding of the strengths and weaknesses of such models.
Thus the use of the historically important but relatively
inaccurate STO-3G basis set1 is no longer widespread. In
contrast, the G1,2 G23 and G34 methods that employ large basis
sets and extensive treatment of electron correlation are highly
accurate but also have relatively restricted use because of the
computational expense of the methods. For practical applications
on large molecules, a compromise is required, typically using
a basis set of double-� quality with added polarization functions.
Consequently, the 6-31G* family of basis sets5 lies at the heart
of many calculations on biomolecular systems.

Within classical approaches, such a systematic hierarchy
of models is not well-defined, though parameters such as the
length of a simulation are pertinent. The lack of a systematic
hierarchy is generally not a problem, as the movement toward
accuracy is usually achieved through improvements in
parametrization rather than through increasing levels of
theory.6 However, there is potentially a problem when
classical and quantum methods are combined within QM/
MM approaches because there is a requirement that the
parametrization should be consistent with the level of theory
used. Developments of classical force fields to include
polarization have been understood for over 30 years; e.g.,
see ref 7. These are usually based on induced dipoles, though
approaches to polarization based on fluctuating charges, the
related chemical potential equalization model and the Drude
oscillator model have also been used,8-14 and some of these
have been included in hybrid QM/MM methods.15 Here we

focus on three approaches to polarization, namely neglect,
the induced charge approach,16-18 and the induced dipole
approach,19 and investigate the extent to which these are
compatible with a range of quantum mechanical model
chemistries ranging from small basis set to large basis set
Hartree-Fock calculations. A number of the larger basis sets
were designed for use with correlated wave functions20 or
with density functional methods,21 but here our quantification
of the quantum mechanical polarization energy will be carried
out using Morokuma energy decomposition analysis22 and
hence our calculations will be at the restricted Hartree-Fock
level.23 The primary system chosen for study is water, because
well parametrized three point induced charge16 and induced
dipole24 water models exist, even though water presents
particularly difficult theoretical challenges because the
geometries offer the potential to expose the limitations in
the induced charge model.

Methods

Atomic polarization is usually modeled using eq 1, where
the vector µ is the induced dipole, R is the isotropic polariz-
ability, here taken from Miller and Savchik,25 and E is the
electric field vector at the atom due to the surrounding atoms
(which are usually not bonded directly).

µ)RE (1)

Because the induced dipoles at other centers contribute to the
field, E, eq 1 is usually iterated to convergence, though iteration
can often be omitted with little loss of accuracy.26,27

For the purposes of this paper, three separate models for
polarization were used for comparison against one another,
within the framework of a QM/MM calculation. First, following
the approach above, the field E, from eq 1, was calculated from
the electronic distribution of the QM region, and this was used
to determine induced dipoles, µ, at each of the points in the
MM region. The polarization energy in this case, denoted
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Epol(µ), was defined as the self-energy of the dipoles, calculated
purely classically over both water molecules (i.e., without either
MM part polarizing the other QM part). Second, the induced
charge method of polarization16 was used to represent the
polarization using point charges. As in the first method, dipoles
were calculated at each of the atomic centers in the MM region.
Previously developed methods for calculating potential-derived
point charges from a distributed multipole analysis18 were then
applied to express each of the induced dipoles as a set of
“induced” charges on the atom carrying the polarizability, R,
and those bonded to it (which in some calculations included
off-atom centers). These induced charges were then fed back
into the QM/MM system, and the QM part of the system was
reconverged with these new MM charges. The polarization
energy in this second method, denoted Epol(q), was defined as
the sum of two parts, representing the polarization of the QM
and the MM parts of the system, respectively. The QM part of
the polarization energy was defined as the change in the energy
of the QM part of the system resulting from the introduction of
the induced MM charges, calculated before and after by
subtracting the self-energy of the MM charges from the energy
of the QM/MM system. The system was then iterated, allowing
for feedback between the QM and MM regions until conver-
gence, and the converged energy of the QM/MM system was
again calculated, the MM part of the polarization being defined
as half the difference in energy resulting from the iteration of
the charges. In a third, and final method, the effects of
polarization were neglected entirely, resulting trivially in a
polarization energy of zero.

To determine a benchmark polarization energy, Morokuma
energy decomposition analysis as implemented in GAMESS
(US) was carried out at the optimized geometry to determine
the quantum mechanical polarization energy, Epol(QM). This
was compared to the polarization energies calculated for the
induced dipoles, and for the induced charges, Epol(µ) and Epol(q),
respectively.

Within the induced charge model, the second of those
described above, the induced charges are determined to repro-
duce the induced dipole of eq 1. For a water molecule, this is
very efficient if the field vector and hence the induced dipole
has a major component parallel to the plane of the water
molecule, but not if there is a major component perpendicular
to the plane of the molecule.27 Consequently, we have studied
four water dimer geometries (see Supporting Information Table
S1 for coordinates): (a), the fully optimized geometry, (b), the
geometry optimized subject to the constraint that the system is
planar (WWplanar), and (c), the water molecules A and B
optimized such that the oxygen atom of water A (OA) and a
hydrogen of water A (HA1) form a hydrogen bond with water
B such that the bond OA-HA1 is perpendicular to the plane of
water B, with OB colinear with the bond OA-HA1 (WWperp). In
the fourth geometry, (d), the water dimer was optimized to a
geometry intermediate between (b) and (c). The optimization
was carried out using a TZVP basis set28 at the B3LYP level;29

this approach was chosen to minimize basis set superposition
effects30 and to avoid biasing the results in favor of any one
method.

Morokuma energy decomposition analysis22 as implemented
in GAMESS (US)31 was carried out at the optimized geometry
to determined the quantum mechanical polarization energy,16

Epol(QM). The polarization for the induced charges, Epol(q), was
determined at the hybrid QM/MM level and was determined as
one of the two asymmetric determinations16 (or the average of
the two), because either molecule can be the QM entity. The

induced dipole polarization energy, Epol(µ), was determined
classically. The polarization energy error (relative to the
Morokuma polarization energy), ∆Ei, at each geometry i (i.e.,
geometries (a) to (d)) and for each method (essentially methods
1 and 2) is therefore given by

∆Ei ) Epol(QM)-Epol(x) (2)

In Epol(x), x is either q or µ for induced charges or induced
dipoles respectively, and the energy includes the self-energy
correction.16 Where polarization is neglected (method 3), the
error is simply Epol(QM). This error is relative to the polarization
energy determined using Morokuma energy decomposition
analysis at that basis set and is not a true error as within a given
model chemistry (i.e., quantum mechanical method and basis
set) it is possible large absolute error but a small ∆Ei by eq 2.
To alleviate this potential confusion, henceforth we refer to ∆Ei

as a measure of consistency (MOC) value rather than an error.
The Bolzmann population, Pi, for the four geometries (a)-(d)
can then be used to determined an overall weighted measure of
consistency, ∆E(tot), for polarization calculated by either
induced charges or induced dipoles, which is given by

∆E(tot))∑ Pi × abs(∆Ei) (3)

Here the absolute value is taken so as to prevent the potential
canceling out of errors of opposite sign.

A diverse range of basis sets were used for the calculations, as
follows: STO-3G,1 3-21G,32 6-31G,33 6-31++G,33 6-31G*,33

6-311G,34 DGDZVP,28 6-31G**,33 cc-pVDZ,35 6-31++G**,33

6-311G*,34 6-311+G*,34 aug-cc-pVDZ,35 DGDZVP2,28 6-311G**,34

DGTZVP,28 6-311++G**,34 6-311G(2df,2pd),34 Sadlej pVTZ,36

6-311++G(2d,2p),34 cc-pVTZ,35 6-311++G(3df,3pd),34 aug-cc-
pVTZ,35 and Roos DZ.37 These Hartree-Fock QM/MM calcula-
tions were carried out using GAUSSIAN 03.38

Results

Figure 1 shows the Morokuma polarization energy for the
optimized (a, WWopt) water arrangement for a range of basis
sets, compared to the total system energy. It can be seen that
the magnitude of the polarization energy generally increases as
the basis set is improved, although the increase does not occur
in a straightforward way. Diffuse functions (denoted +) rather
than polarization functions (denoted *, nd, np) are the most
important factor in determining the polarization energy, such
that the 6-31++G basis set, which has 10 condensed electron

Figure 1. Morokuma polarization energy of an optimized water dimer
system plotted against the total energy value for a range of basis sets.
Labeled basis sets are marked in red, and other basis sets are marked
in blue.
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shells per water molecule, captures more of the polarization
energy than the 6-311G(2df,2pd) basis set, which has 19
condensed electron shells per water, and is the “better” of the
two basis sets according to the variational principle. The greatest
amount of polarization is captured by highly diffuse basis sets
such as aug-cc-pVTZ, which has a polarization energy roughly
3 times greater than 6-311G(2df,2pd). A table of energy values
for all of the basis sets tested is given in Supporting Information
Table S2, and this shows that the increase in polarization energy
with basis set is particularly marked for the perpendicular
arrangement (c, WWperp) such that for the small basis sets there
is a large difference between the two geometries (e.g., 1.11 kJ
mol-1 or 72% at the 6-31G level), but that the relative difference
decreases markedly for the larger basis sets.

Figure 2 reports the overall weighted error in the polarization
energy for the three methods at six different basis sets, ordered
by the amount of polarization energy in an optimized water
dimer (from Figure 1). For basis sets with a smaller amount of
polarization energy, the induced charge method gives the best
(lowest) measure of consistency, whereas for basis sets with a
larger amount of polarization energy, the dipole method has
the best (lowest) measure of consistency. For the first three basis
sets recorded, the measure of consistency is surprisingly better
(lower) for neglecting polarization completely than for using
the induced dipole method.

Measure of consistency values for a wider range of basis sets
are displayed in Supporting Information Table S3. At the level
of the smallest basis set, e.g., STO-3G, the quantum mechanical
polarization energy is so small (0.68 kJ mol-1 for the optimized
geometry) that it is almost more consistent to neglect polariza-
tion than to include the induced charge correction. (Here we
note that the STO-3G calculations were carried out at the
B3LYP/TZVP geometry and so basis set superposition effects
were minimized;16 at the STO-3G geometry, basis set superposi-
tion effects could present as larger polarization effects.) At the
3-21G level or above, it is certainly more consistent to include
the induced charge correction than to neglect it, though it would
be surprisingly more consistent to ignore the induced dipole
correction in a hybrid QM/MM calculation for many basis sets,
up to DGTZVP. For intermediate basis sets, e.g., 6-311G**,
the induced charge model is the most consistent of the three

models. Only with large basis sets such as 6-311++G(3df,3pd)
and the Sadlej pVTZ basis set, specifically designed for
polarizability calculations, is the treatment of polarization at
the induced dipole level more consistent than the induced charge
level for a given model chemistry.

These results are molecule specific, as the performance of
the induced charge model, but less so the induced dipole
model, will depend on both topology and conformation and
whether or not critical atoms have sufficient neighboring
atoms to reproduce well all components of an induced dipole.
Here the water dimer is a severe test and for other molecules,
particularly nonplanar ones, the switch from induced charge
being more consistent to induced dipole being more consistent
may occur at a larger basis set. This effect can be seen in
Table 1 where the induced charges often give the lowest
(best) measure of consistency for the planar geometry, e.g.,
with the 6-311++G** and 6-311G(2df,2pd) basis sets
whereas the induced dipoles are more likely to give the lowest
(best) measure of consistency for the perpendicular geometry,
at least with the larger basis sets. One may assume that the
perpendicular water system is something of a worst-case
scenario as far as induced charges are concerned, but Table
1 indicates that this is not necessarily the case, as shown by
the results for moderate sized basis set. Here we note that
the induced charge model can be supplemented with off-
atomic center charges to increase the accuracy of polarization
energy calculations for difficult geometries such as the
perpendicular arrangement (geometry c).27 The effect of these
off-atom centers is shown in the Supporting Information
where the equivalent of Figure 2 shows that off-atom centers
reduces the error for all basis sets apart from 6-31G* (because
off-atom centers allow of a more complete description of
the electrostatics) and indeed the use of off-atom centers does
give the most consistent results (lowest absolute error) for
the 6-311G**, DGTZVP and 6-311++G** basis sets.
However, the results presented suggest that the use of off-
atom centers should only be done given knowledge of the
appropriate model chemistry level. We also note from the
populations presented in Supporting Information Table S3
that the worst-case scenario perpendicular geometry has a
low population of about ∼5 ( 3%, so it is unlikely to make
a significant contribution to the mean energy of an ensemble
of water molecules. A more comprehensive version of Table
1 is contained in Supporting Information Table S4.

Discussion

The concept of a model chemistry is well understood within
applications of quantum chemistry to problems in chemistry and
biology, but the realm of classical mechanics is more closely
linked to experiment through parametrization. Nevertheless,
within the classical realm, the link to model chemistry is
frequently retained in the determination of the atomic charges,39-41

but the danger remains that mixing of terms may arise through
parametrization, either by design (as in the use of charges that
are too polar to model implicit polarization42,43 or by accident,
e.g., by use of an inappropriate dielectric constant. This process
makes it difficult to retain the concept of a model chemistry
within the classical domain. Nevertheless, when the two
disparate domains are combined, either for the purposes of
parametrization or for studying large systems within a hybrid
approach, it is important that the combination is appropriate.

Here we have shown that classical polarization, the term that
is generally missing from many simulations and hybrid QM/
MM calculations on large complex systems, can be combined

Figure 2. ∆E(tot) (measure of consistency) values for induced charge
(left, blue), induced dipole (middle, maroon) and neglect (right, cream)
methods. Basis sets for which the induced charge method is the most
consistent (smallest ∆E(tot)) are labeled in blue text, and basis sets for
which the induced dipole method is the most consistent (smallest
∆E(tot)) are labeled in red text.
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at two levels. The first is to include polarization at the induced
charge level, because this gives a consistent treatment of
polarization for a range of moderately sized basis sets, even
for the difficult case of geometries perpendicular to planar
groups, as in WWperp. The second level is to include polarization
at the induced dipole level, and this is appropriate for very large
basis set calculations. The induced dipole approach is therefore
more accurate and this is in line with the use of multiple diffuse
functions to accurately model polarization within quantum
chemical calculations. However, within QM/MM calculations
where the focus is naturally on the QM region, it would not be
appropriate to couple a more accurate treatment of polarization
(via induced dipoles) in the less important MM region with a
moderate treatment of polarization in the more important QM
region (via moderate sized basis set). The alternative of a
moderate treatment of polarization in the less important MM
region (e.g., through induced charges) with a full treatment of
polarization in the more important QM region (through use of
an appropriate diffuse basis set) may be acceptable but is not
within the spirit of a consistent model chemistry.

Within wholly classical calculations, it is common practice
to parametrize against quantum chemical calculations;6 steps
to include polarization in classical simulations should take into

account the level of polarization inherent in the quantum
chemical methods used in the parametrization, particularly as
it is usually the electrostatics and not the polarization that have
the dominant effect.

An approach for including induced dipoles within QM/MM
calculations has been developed by van Duijnen,44 but the
induced charge scheme is more straightforward to implement.
The induced charge scheme is only one of many alternatives to
the generally accepted induced dipole approach, and other
schemes have been successfully used by many authors, as
discussed in ref 15. Nevertheless, as polarization is used more
routinely, whether in QM/MM calculations or in classical
simulations, consideration should be given to the appropriate
model chemistry.

Conclusions

The primary conclusion from the water dimer calculations,
despite unfavorable geometries for some water dimer orienta-
tions, is that within a specified model chemistry, the induced
charge approach is consistent with medium size basis set
calculations whereas the induced dipole approach is only
consistent with large basis set calculations. This result is highly

TABLE 1: Induced Dipole and QMMM (Induced Charge) Measure of Consistency (MOC) Values for Water Systems in the
WWplanar and WWperp Orientations, Modeled Using a Range of Basis Setsa

WWplanar

basis set Morokuma
ind dipole

MOC
QU+CL

QMMMMOC
CL+QU

QMMM MOC
mean abs

QMMM MOC

1 STO-3G -0.8 -2.7 -1.2 +0.1 0.7
2 3-21G -1.0 -4.5 -0.1 +0.4 0.3
3 6-31++G -4.4 -5.5 +0.5 +2.5 1.5
4 6-31G* -2.6 -4.2 -0.4 +0.8 0.6
5 cc-pVDZ -2.4 -3.5 -3.5 +0.8 2.2
6 aug-cc-pVDZ -5.1 -1.2 -1.6 +2.8 2.2
7 6-311G** -3.0 -3.6 -0.1 +1.2 0.7
8 DGTZVP -3.6 -3.5 +0.4 +1.6 1.0
9 6-311++G** -4.0 -3.2 -2.3 +2.1 2.2
10 6-311G(2df,2pd) -3.5 -2.4 -2.5 +1.4 2.0
11 Sadlej pVTZ -6.9 +0.3 +3.6 +4.4 4.0
12 6-311++G(2d,2p) -4.4 -2.0 -1.6 +2.3 2.0
13 6-311++G(3df,3pd) -5.4 -1.1 +2.2 +3.0 2.6
14 aug-cc-pVTZ -8.1 +1.5 +4.8 +5.5 5.2

WWperp

basis set Morokuma
ind dipole

MOC
QU+CL

MOC
CL+QU

MOC
mean abs

QMMM MOC

1 STO-3G -0.2 -2.3 -0.3 -0.1 0.2
2 3-21G -1.0 -4.5 -0.1 +0.4 0.3
3 6-31++G -5.2 -3.0 +3.6 +3.9 3.8
4 6-31G* -1.9 -4.2 +0.6 +0.9 0.8
5 cc-pVDZ -2.1 -3.3 +0.7 +0.8 0.8
6 aug-cc-pVDZ -7.2 +0.3 +5.2 +5.1 5.2
7 6-311G** -3.1 -2.9 +1.7 +1.8 1.8
8 DGTZVP -3.2 -3.4 +1.7 +2.0 1.9
9 6-311++G** -6.2 -0.7 +4.4 +4.5 4.5
10 6-311G(2df,2pd) -4.1 -1.6 +2.5 +2.3 2.4
11 Sadlej pVTZ -10.2 +3.2 +8.3 +8.3 8.3
12 6-311++G(2d,2p) -7.1 +0.1 +5.2 +5.1 5.2
13 6-311++G(3df,3pd) -8.7 +1.6 +6.8 +6.8 6.8
14 aug-cc-pVTZ -13.5 +6.5 +11.5 +11.3 11.4

a The MOC value that is generally lower (and therefore most consistent with the Morokuma energy decomposition value) for each system
(i.e., induced dipoles or induced charges) and basis set is in bold type. Note that a negative MOC corresponds to an overestimate in the
magnitude of polarization, and a positive MOC corresponds to an underestimate in the magnitude of polarization. QU+CL refers to the
QMMM system where the water donating a hydrogen bond is modeled QM, and CL+QU refers to the system where the water that accepts a
hydrogen bond is QM. The final column gives the mean of the absolute MOC of the two QMMM columns, QU+CL and CL+QU. All MOC
values are given in kJ mol-1.
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relevant to the concept of QM/MM model chemistries, because
the introduction of polarization using an inappropriate scheme
could lead to considerable imbalances in the relative magnitude
of polarization within different domains of the calculations. The
ease of implementation and interpretation of induced charges
is a secondary benefit that may be useful in the interpretation
of QM/MM calculations on large systems, which will of
necessity need to be carried out using moderately sized basis
sets.
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